2019 Online KT Conference: Innovative KT Strategies That Work

Hosted by AIR’s Center on KTDRR
October 28, 30, and November 1, 2019
Panel Presentation 2: Systematic Reviews for a Complex World: New Avenues in Research Synthesis

Katy Sutcliffe
EPPI-Centre, Institute of Education, University College London
Systematic reviews for a complex world: New avenues in evidence synthesis

Dr Katy Sutcliffe
Associate Professor
EPPI-Centre
UCL Institute of Education
<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>Appropriateness</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Systematic review</td>
<td>• Systematic review</td>
<td>• Systematic review</td>
</tr>
<tr>
<td>• Multi-centre studies</td>
<td>• Multi-centre studies</td>
<td>• Multi-centre studies</td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• RCT</td>
<td>• RCT</td>
<td>• RCT</td>
</tr>
<tr>
<td>• Observational studies</td>
<td>• Observational studies</td>
<td>• Observational studies</td>
</tr>
<tr>
<td>Fair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Uncontrolled trials with dramatic results</td>
<td>• Descriptive studies</td>
<td>• Descriptive studies</td>
</tr>
<tr>
<td>• Before and after studies</td>
<td>• Focus groups</td>
<td>• Action research</td>
</tr>
<tr>
<td>• Non-randomized controlled trials</td>
<td>• Focus groups</td>
<td>• Before and after studies</td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Descriptive studies</td>
<td>• Expert opinion</td>
<td>• Expert opinion</td>
</tr>
<tr>
<td>• Case studies</td>
<td>• Case studies</td>
<td>• Case studies</td>
</tr>
<tr>
<td>• Expert opinion</td>
<td>• Studies of poor methodological quality</td>
<td>• Studies of poor methodological quality</td>
</tr>
<tr>
<td>• Studies of poor methodological quality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Hierarchy of evidence: ranking of research evidence evaluating healthcare interventions.

They [systematic reviews] pick up general principles that are self-evident anyway, or they are so specific that there is little that is transferable. So a systematic review on dance among women over the age of 75 is quite interesting and potentially quite useful, [but] that is not that helpful in helping us think how we spend our limited physical activity budget across a number of different options which might be competing for similar resources.

'Few systematic reviews and meta-analyses are both non-misleading and useful.'

Why might SRs have limited usefulness?

• Typical caricature of Cochrane reviews:
 – Narrow in scope and range of included methods
 – Aim to answer a single question with a single answer

• But policymakers do not come to us with a single narrow question or aim for a single answer
 – Policy and practice concerns often precede/go beyond questions of effectiveness e.g., ‘Does it vary according to...?’ ‘What is the range of possible solutions?’ ‘What is the extent of the problem?’
Not just complex questions, but complex interventions

Public health and other interventions may involve multiple, interacting components

Those that involve people can be particularly complex – impacts affected by nature and beliefs of both provider and recipient
If SRs are to be *used* they need to be *useful*

SRs with complex questions / interventions can be challenging but *essential* if SRs to be *more than an academic exercise*

e.g., without identifying critical features/ moderators > decision makers left *unsure about exactly what to implement and how*
'When the methods for conducting systematic reviews were originally developed, the process of reviewing the literature was treated as relatively straightforward. Complexity existed, but reviewers often tried to simplify this complexity to group studies and in attempts to make comparative claims. In general, the systematic reviews and primary research included in systematic reviews approached research from a classic reductive philosophic and methodologic stance. Increasingly, people interested in adopting published interventions from reviews have found that this reductive stance eliminates details that are critical for them to understand whether the intervention is feasible and likely to work in their context, with their populations, and at what cost.'

How can we enhance the utility of SRs?

Solutions to these issues are constantly evolving – some avenues of work that we have been pursuing focus in on the detail of interventions

• Guidance for detailed reporting of components of interventions – with TIDieR team

• Methods for identifying which components of complex interventions are critical to success
 – Intervention Component Analysis
 – Qualitative Comparative Analysis
Clinicians, patients, and policymakers cannot implement effective interventions if details of the interventions are not known. Review users should be able to compare the details of the interventions and consider whether – and, if so, how – to implement interventions in their setting.
Intervention details important for ...

• **Planning**: During question formulation and protocol writing, consider dimensions of difference in interventions.

• **Data extraction**: Draw on detailed tool – e.g. TIDieR checklist. Request missing info from authors.

• **Analysis**: Use information to inform interpretation of results.

• **Reporting**: Detailed account of intervention characteristics.
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Brief name</th>
<th>Recipient</th>
<th>What</th>
<th>Why</th>
<th>What (procedures)</th>
<th>Who provided</th>
<th>How</th>
<th>Where</th>
<th>When and how much</th>
<th>Tailoring</th>
<th>Modification of intervention throughout trial</th>
<th>Strategies to improve or maintain intervention fidelity</th>
<th>Extent of intervention fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altmann (2007)</td>
<td>Complex GP peer led educational intervention</td>
<td>GPs and patients</td>
<td>Focused on communication in a consultation and the mutual discordance between patient expectations and doctor perceptions</td>
<td>Peers used a semistructured dialogue script for outreach visits. Patient materials (scallo and postcard) provided in waiting room primarily focused on the patients’ role, doctor patient “antibiotic misunderstanding” and belief evidence based information on acute cough and antibiotics</td>
<td>GP peer-led outreach visits. Peers were trained to explore the “opposite” motivational background to tackle their beliefs and attitudes. GPs were provided with information about patient expectations and demands, to elicit anxieties, and to make antibiotic prescribing subject in the consultation. Patient materials were aimed at empowering patients to raise and clarify issues in the consultation</td>
<td>5 meeting GPs and teaching assistants in the local author department (2 female, 3 to 65 years old, trained in 3 sessions for outreach visits)</td>
<td>Face-to-face outreach visits to GPs</td>
<td>3 outreach visits performed per GP (duration not specified)</td>
<td>Not described</td>
<td>Not described</td>
<td>Not described</td>
<td>93/92 GP received intervention</td>
<td></td>
</tr>
<tr>
<td>Briel (2006)</td>
<td>Brief training programme in patient-centred communication</td>
<td>GPs</td>
<td>Focused on teaching GPs how to understand and modify patients’ concepts and beliefs about the use of antibiotics for ATIs; GPs were introduced to a model (Prochaska 1992) for identifying patients’ attitude and readiness for behaviour change</td>
<td>Evidence-based guidelines for diagnosis and treatment of ATIs (updated, locally adapted and reviewed by local experts) distributed as a booklet</td>
<td>GPs were trained in elements of active listening, to respond to emotional cues, and to tailor information given to patients. Physicians used a model to introduce a model (Prochaska 1992) to identify patients’ attitudes and readiness for behaviour change.</td>
<td>Not specified</td>
<td>Seminar in small groups (number not specified) and personal feedback by telephone before the start of the trial. Evidence-based guidelines were distributed as a booklet</td>
<td>Not specified</td>
<td>Attendance at one 6-hour seminar and personal feedback by telephone before the start of the trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butler (2012)</td>
<td>Multimodal flexible blended learning approach for clinicians</td>
<td>GPs and nurse practitioners</td>
<td>Binded learning experience to develop clinicians’ sense of the importance of change and their confidence in their ability to achieve change based on social learning theory. Clinicians reflected on practice level antibiotic dispensing and resistance data, reflected on their own clinical practice (contagous bound learning), and were trained in novel communication skills derived from principles of motivated intervention</td>
<td>Summaries of research evidence and guidelines, web-based modules using video rich material presenting novel communication skills, and a web-based forum to share experiences and views (see www.stemmingthehebe.org for online component)</td>
<td>Intervention consists of 7 components: experiential learning, updated summaries of research evidence and guidelines, web-based learning in novel communication skills, practicing consulting skills in routine cases, facilitator-led, practice-based seminar on practice level data on antibiotic prescribing and resistance, reflections on own clinical practice; and a web-based forum to share experiences and views.</td>
<td>A facilitator conducted the face-to-face seminar</td>
<td>Intervention consisted of 7 components: 5 online, 1 face-to-face, and 1 facilitator led, practice-based seminar.</td>
<td>Not described</td>
<td>Not described</td>
<td>Not described</td>
<td>138/119 completed all online training and uploaded descriptions of consultations for the portfolio tasks. 129/119 attended the practice based seminars. 76/119 completed the optional booster session at 6 months. 11/119 entered new threads on the online forum with 81 posts. 104/158 consultations of consultations with patients at the end of training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cals (2009)</td>
<td>Enhanced communication skills training</td>
<td>GPs</td>
<td>Focused on information exchange based on the elicitation of key framework from counselling in behaviour change: eliciting patients’ fears and expectations and patient’s opinions on antibiotics and outlining the natural duration of cough in lower respiratory tract infections</td>
<td>Pre- and post workshop transcripts of simulated patients</td>
<td>Brief context learning based workshop in small groups (5–8 GPs), preceded and followed by practice-based consultations with simulated patients. GPs reflected on their own transcripts of consultations with simulated patients, which were also peer reviewed by colleagues</td>
<td>Experienced moderator led seminars</td>
<td>Brief workshop (5–8 GPs), preceded and followed by practice-based consultation with simulated patients.</td>
<td>Not described</td>
<td>Not described</td>
<td>Not described</td>
<td>66% of patients recruited by GPs achieved 10% of enhanced communication skills, required a GP’s use of at least 3 of 6 specific communication skills compared with 19% in the no training arm.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHODOLOGY

Intervention Component Analysis (ICA): a pragmatic approach for identifying the critical features of complex interventions

Katy Sutcliffe, James Thomas, Gillian Stokes, Kate Hinds and Mukdarut Bangpan

Abstract

Background: In order to enable replication of effective complex interventions, systematic reviews need to provide evidence about their critical features and clear procedural details for their implementation. Currently, few systematic reviews provide sufficient guidance of this sort.

Methods: Through a worked example, this paper reports on a methodological approach, Intervention Component Analysis (ICA), specifically developed to bridge the gap between evidence of effectiveness and practical implementation of interventions. By (a) using an inductive approach to explore the nature of intervention features and (b) making use of ‘trialists’ informally reported experience-based evidence, the approach is designed to overcome the deficiencies of poor reporting which often hinders knowledge translation work whilst also avoiding the need to invest significant amounts of time and resources in following up details with authors.

Results: A key strength of the approach is its ability to reveal hidden or overlooked intervention features and barriers and facilitators only identified in practical application of interventions. It is thus especially useful where hypothesised mechanisms in an existing programme theory have failed. A further benefit of the approach is its ability to identify potentially new configurations of components that have not yet been evaluated.

Conclusions: ICA is a formal and rigorous yet relatively streamlined approach to identify key intervention content and implementation processes. ICA addresses a critical need for knowledge translation around complex interventions to support policy decisions and evidence implementation.

Keywords: Systematic reviews, Evidence synthesis, Complex interventions, Knowledge translation, Paediatrics, Medication error, Electronic prescribing
The ICA approach

• 3 stages – (1) describe features, (2) views on strengths of key features, (3) views on implementation

• Two key features of ICA approach

 1) Includes ‘informal evidence’ – author description on experience of using EP (informal feedback from users, author observation/hypothesis)

 2) Coded evidence using qualitative approach – to address problem of lack of information/inconsistency in intervention descriptions
Review in which ICA was developed

• DHSC commissioned review on Paediatric Electronic Prescribing (EP)
• EP found to be generally effective for reducing medication errors – but some harmful interventions
• DHSC commissioned further work to answer:-
 – What does successful EP system 'look like'?
 – How should hospitals implement?
 – How can we avoid harms?
ICA Stage 1: Intervention components

ICA enabled bespoke taxonomy:

1. 'Off the peg', 'Customised' or 'Home-grown'
2. Generic ‘adult based’ or paediatric specific
3. Included 'front-end' decision support tools – intentionally accessed features (dose calculators, order sets, information access)
4. Incorporated 'back-end' support safety features – automatically triggered/ system requirements (alerts, mandatory fields, access security)
Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Paediatric specific tool</th>
<th>Front end - decision support</th>
<th>Back end - safeguarding features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dose calculation</td>
<td>Order sets</td>
</tr>
<tr>
<td>Han (2005)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jani (2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>King (2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walsh (2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'Off the peg' commercially available packages

- Cordero (2004)
- Del Beccaro (2006)
- Holdsworth (2007)
- Kadmon (2009)
- Kazemi (2011)
- Keene (2007)
- Upperman (2005)
- Warrick (2011)

'Customised' commercially available packages

- Lehmann (2006)
- Maat (2013)
- Potts (2004)
- Sowan (2010)*
- Vardi (2007)

'Home grown' packages

- Barnes (2009)
- Sullins (2012)

Unidentified package type

- Barnes (2009)
- Sullins (2012)
ICA Stage 2: Strengths/weaknesses of key features

- **15 authors commented on value of (front end) decision support** unanimous it is a **key factor in error reduction**

 - 'Similar findings may not be reproducible ... with nominal decision support' (Holdsworth et al., 2007)

- **Fewer studies** commented on **back-end features** – e.g., alerts

- **Authors noted some front-end decision support problems**

 - Han and colleagues (2005) found that automated entry increased order time

 - New errors introduced – e.g., Mis-selection from dropdown list
ICA Stage 3: Development and implementation

- Authors’ experience-based knowledge on implementation

1. **Customisation essential**: 14/20 authors recommend customising EP systems or warn against use of generic ‘off the peg’ tools

2. **Engage with a range of stakeholders (SH)**: 9 authors describe engaging with SH during development/6 SH involvement enhances EP.

3. **Foster familiarity with EP system**: 13 recommend enhancing user familiarity

4. **Ensure infrastructure is adequate and appropriate**: 6 authors stress importance of appropriate infrastructure.

5. **Iterative implementation**: 14 authors recommend / imply value of iterative or ‘suck it and see’ approach to development
• Strengths of ICA
 – Vital ‘insight’ into critical intervention features and implementation
 – Uses wealth of rich ‘informal evidence’ underutilised in many SRs
• Weaknesses of ICA
 – Informal evidence not equivalent to research data
 – At risk of being partial or biased – self-justifying
• Efforts to mitigate weaknesses
 – Explicitness about extent of data / consistency of opinion across studies
 – Checks to see if emergent themes corroborated by other evidence (other studies/effectiveness data)
Qualitative Comparative Analysis

• Will briefly address as have given a previous webinar on this topic – slides available here: https://ktddr.org/training/webcasts/webcast51-60/docs/EPPI-8_webisode_Sutcliffe-Kneale_020718.pdf

• QCA is particularly suitable for identifying ingredients of complex interventions as it overcomes some of the challenges that complexity brings for existing synthesis methods
What is QCA?

- **Aim**: To identify mechanisms through which interventions have the impact they do – not ‘what works, on average’

- **How**: Identifies combinations of intervention/contextual features that are (or are not) present when an intervention is successful (or not) in obtaining desired outcome

- **Logic**:
 - Case rather than variable oriented – deep holistic understanding of interventions, features and context (much like ICA)
 - Set-theoretic logic – systematic comparison of cases (interventions) within sets (e.g., effective vs ineffective) to identify necessary and sufficient conditions
 - Analysis informed by – or underpinned by – existing theories
What does QCA do that other methods can’t?

Complexity means meta-regression likely unsuitable

• Complexity = replications rare
 – Heterogeneity is unavoidable
 – SR datasets often lack necessary numbers of trials for MR, sub-group analyses etc.

• Complexity = multiple pathways to effectiveness
 – Complexity means that different combinations of causal conditions may be capable of generating the same outcome
 – MR = correlation-based – association between presence/lack of potential moderators and outcome
Conclusions

• Systematic reviews are the most robust and rigorous source of evidence – but not always useful.

• Systematic reviewers are seeking ways to make reviews more useful to decision makers AND ways to handle intervention complexity.

• There is a growing range of methods/guidance to enhance review utility by unpacking the nature and complexity of the interventions they examine.
Further reading on using QCA in SRs

Disclaimer

The contents of this presentation were developed under grant number 90DPKT0001 from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR). NIDILRR is a Center within the Administration for Community Living (ACL), Department of Health and Human Services (HHS). The contents of this presentation do not necessarily represent the policy of NIDILRR, ACL, HHS, and you should not assume endorsement by the Federal Government.

Don’t forget to fill out the evaluation form!