An Overview of Effect Sizes and Meta-analysis

KTDRR Research Evidence Training

Ryan Williams, PhD, Principal Researcher
Joshua R. Polanin, PhD, Principal Researcher
American Institutes for Research
Introduction

Ryan Williams
- Principal Researcher, American Institutes for Research (AIR)
- Principal Investigator: Institute of Education Sciences (IES)-funded meta-analysis focusing on heterogeneity in mathematics intervention effects
- Co-Principal Investigator: IES-funded training grant on meta-analysis

Josh Polanin
- Principal Researcher, AIR
- Principal Investigator: two National Institute of Justice (NIJ)-funded reviews on school violence
- Co-Principal Investigator: IES training grant on meta-analysis; IES-funded review on college aid
- Project Director: What Works Clearinghouse Statistics, Website, and Training (SWAT) contract
Overview

- **Effect Size**
 - What is an effect size, and why is it important in meta-analysis?
 - How to calculate an effect size depending on what the underlying data are
 - Three varieties: standardized mean-difference, odds ratio, correlation

- **Meta-analysis**
 - Why synthesize effect sizes?
 - Basics of fixed- and random-effects models
 - Assessing heterogeneity among effect sizes
 - Explaining heterogeneity based on units, treatments, outcomes, and settings (UTOS)

- If time allows—questions at the end
What is an effect size, and why is it important in meta-analysis?

- Start with a thought experiment: Imagine you are interested in understanding whether various programs—all using the same basic tenets—have an impact on an outcome domain.
 - “The purpose of this review was to determine whether therapeutic riding and hippotherapy improve balance…” (among many other outcomes)
- How *balance* is measured across each included study probably varies—but each measure focuses on the same underlying construct.
What is an effect size, and why is it important in meta-analysis? (Cont.)

- Meta-analysis expresses the results of each study using a quantitative index of effect size.
- Effect sizes are measures of the strength or magnitude of a relationship of interest.
- Effect sizes have the advantage of being comparable (i.e., they estimate the same thing) across all the studies and therefore can be summarized across studies in the meta-analysis.
What effect size should be calculated?

- Effect sizes can be expressed in many different metrics.
 - \(d \), \(r \), \(OR \), \(RR \), etc.
 - The decision about which metric to use is based on what the primary authors report.

- Effect sizes can be unstandardized or standardized.
 - Unstandardized = expressed in measurement units (do not have the properties we need!)
 - Standardized = expressed in standardized measurement units

- Effect sizes should be accompanied by their standard errors; these get calculated along with the effect size and will be used in meta-analytic calculations.
The d family

- The standardized mean difference.
- Used when we are interested in two-group comparisons using means.
- Groups could be two experimental groups or, in an observational study, two groups of interest, such as boys versus girls.
The d family (Cont.)

- Notation:

 Group means: $\bar{X}_{G1}, \bar{X}_{G2}$
 Group sample sizes: n_{G1}, n_{G2}
 Total sample size: $N = n_{G1} + n_{G2}$
 Group standard deviations: s_{G1}, s_{G2}
The d family (Cont.)

- Notation:

Group means: $\bar{X}_{G1}, \bar{X}_{G2}$

Group sample sizes: n_{G1}, n_{G2}

Total sample size: $N = n_{G1} + n_{G2}$

Group standard deviations: s_{G1}, s_{G2}

$$ES_{sm} = \frac{\bar{X}_{G1} - \bar{X}_{G2}}{s_p}$$

Pooled sample standard deviation (i.e., a weighted average standard deviation)
The d family (Cont.)

- The regular effect size formula is biased, especially with small samples.
- We can easily apply a correction for this bias:

\[
ES'_{sm} = \left[1 - \frac{3}{4N - 9} \right] ES_{sm}
\]

- This produces a Hedges’ g effect size, or bias-corrected estimate.
The d family (Cont.)

- Each effect size needs a measure of precision:

$$SE_{sm} = \sqrt{\frac{n_{G1} + n_{G2}}{n_{G1}n_{G2}}} + \frac{ES'_{sm}^2}{2(n_{G1} + n_{G2})}$$
The d family (Cont.)

The *d* family (Cont.)

- We can take the values reported in Table 1 and compute an effect size and its standard error:

\[
S_p = \sqrt{\frac{(43 - 1)13.9^2 + (41 - 1)19.1^2}{(43 - 1) + (41 - 1)}} = 16.6
\]

\[
ES_{sm} = \frac{5.8 - 16.2}{16.6} = -.63
\]

\[
ES_{sm}' = \left[1 - \frac{3}{4(43 + 41) - 9}\right] - .63 = -.62
\]

\[
SE_{sm} = \sqrt{\frac{43 + 41}{43 \times 41} + \frac{-.62^2}{2(43 + 41)}} = .22
\]
The r family

- The correlation coefficient, or r family effects, may be appropriate when …
 - studies have a continuous outcome measure,
 - study designs assess the relation between a quantitative predictor and the outcome (possibly controlling for covariates), or
 - the analysis uses regression (or the general linear model).
The \(r \) family (Cont.)

- When using the correlation, you (or a computer program) will do these two things:
 1. Translate it into Fisher’s \(z \):

\[
Z_r = \frac{1}{2} \ln\left(\frac{1 + r}{1 - r} \right)
\]

2. Calculate the standard error of \(Z \):

\[
SE_Z = \frac{1}{\sqrt{n - 3}}
\]
The r family (Cont.)

- Practically—the formulas are important to know, but you probably won’t use them directly.

- Instead—if the correlation is of interest, you will need to locate it in the study and locate its sample size.
The odds ratio family(ish)

- Consider a study in which a treatment group (Tx) and a control group (Cx) are compared with respect to the frequency of a binary characteristic among the participants.

- In each group, we will count how many participants satisfy the binary outcome of interest (e.g., passing a test, graduating, being cured of a disease, etc.).

- The odds ratio is one of a few effect sizes that can be calculated in these scenarios (but it is not the only one).
The odds ratio family(ish) (Cont.)

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Success</th>
<th>Failure</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>5</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Comparison</td>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>26</td>
<td>37</td>
</tr>
</tbody>
</table>

Odds of treatment “success” \[
\frac{5}{14} = .36
\]

Odds of comparison “success” \[
\frac{6}{12} = .50
\]

The “odds ratio” is literally just that—a ratio of two odds—in this case, the odds of treatment success divided by the odds of comparison group success.

\[
\frac{.36}{.50} = .72
\]

The odds of success in treatment are .72 times the odds of success in control.
The odds ratio family(ish) (Cont.)

- When using the correlation, you (or a computer program) will do these two things:
 1. Transform it to the log odds ratio:
 \[\text{Log odds ratio} = \ln(\text{OR}) \]
 2. Calculate the log odds ratio standard error:

\[
SE_{\ln(\text{OR})} = \sqrt{\frac{1}{\text{Cell } a} + \frac{1}{\text{Cell } b} + \frac{1}{\text{Cell } c} + \frac{1}{\text{Cell } d}}
\]

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Co</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Meta-analysis Introduction

- Computing an average effect is done in two general ways:
 - Fixed-effects model
 - Random-effects model
- Both approaches typically will use an estimate of precision to calculate a weighted mean effect size.
- BUT, the two approaches differ in how they characterize those weights.
Meta-analysis Introduction (Cont.)

- Computing an average effect is done in two general ways:
 - Fixed-effects model
 - Random-effects model
- Both approaches typically will use an estimate of precision to calculate a weighted mean effect size.
- BUT, the two approaches differ in how they characterize those weights.
The fixed-effects model considers **one** of variation: sampling variance.

\[
\overline{ES_{FE}} = \frac{\sum_{i=1}^{j} (w_i ES_i)}{\sum_{i=1}^{j} (w_i)}
\]

\[
SE_{FE} = \sqrt{\frac{1}{\sum_{i=1}^{j} w_i}}
\]

\[
w_i = \frac{1}{SE_i^2}
\]
This model is helpful when the effect sizes are homogeneous.

That is, the only reason they are identical is because they have different samples.

This is a strong assumption.
The random-effects model considers **two** sources of variation: sampling variance and between-study variance.

\[
\bar{ES}_{RE} = \frac{\sum_{i=1}^{j} (w_i ES_i)}{\sum_{i=1}^{j} (w_i)} \\
SE_{RE} = \sqrt{\frac{1}{\sum_{i=1}^{j} w_i}}
\]

\[
w_i = \frac{1}{SE_i^2 + \hat{\tau}^2}
\]
The random-effects model considers *two* sources of variation: sampling variance and between-study variance.

\[
\overline{ES_{RE}} = \frac{\sum_{i=1}^{j} (w_i ES_i)}{\sum_{i=1}^{j} (w_i)} \\
SE_{RE} = \sqrt{\frac{1}{\sum_{i=1}^{j} w_i}} \\
\]

Estimated heterogeneity

\[w_i = \frac{1}{SE_i^2 + \hat{\tau}^2}\]
Because the random-effects model uses two sources of variation, the standard error around the mean effect will be larger than the standard error for an equally sized fixed-effects model.

BUT, unless the multiple effect sizes are coming from maximum-control conditions (i.e., carefully scripted, laboratory-type replications), it is hard to rule out a random-effects model.

For this reason, we strongly encourage using a random-effects model. If your data are statistically homogeneous, it won’t hurt you!
What is effect size heterogeneity?

Effect of Brief Alcohol Interventions

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Hedges' g</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-0.36 (-1.24, 0.52)</td>
<td>4.02</td>
</tr>
<tr>
<td>9</td>
<td>-0.18 (-0.57, 0.21)</td>
<td>7.06</td>
</tr>
<tr>
<td>14</td>
<td>-0.14 (-2.64, 2.36)</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>-0.11 (-0.32, 0.11)</td>
<td>8.13</td>
</tr>
<tr>
<td>1</td>
<td>-0.08 (-0.34, 0.19)</td>
<td>7.88</td>
</tr>
<tr>
<td>3</td>
<td>-0.04 (-0.38, 0.29)</td>
<td>7.43</td>
</tr>
<tr>
<td>12</td>
<td>-0.00 (-0.80, 0.79)</td>
<td>4.45</td>
</tr>
<tr>
<td>11</td>
<td>0.15 (-0.35, 0.66)</td>
<td>6.29</td>
</tr>
<tr>
<td>10</td>
<td>0.21 (-0.07, 0.49)</td>
<td>7.80</td>
</tr>
<tr>
<td>15</td>
<td>0.21 (-0.02, 0.44)</td>
<td>8.06</td>
</tr>
<tr>
<td>2</td>
<td>0.36 (-0.20, 0.92)</td>
<td>5.90</td>
</tr>
<tr>
<td>6</td>
<td>0.46 (0.06, 0.85)</td>
<td>7.05</td>
</tr>
<tr>
<td>17</td>
<td>0.47 (-0.27, 1.22)</td>
<td>4.74</td>
</tr>
<tr>
<td>5</td>
<td>0.79 (-0.07, 1.64)</td>
<td>4.14</td>
</tr>
<tr>
<td>8</td>
<td>0.82 (0.50, 1.15)</td>
<td>7.51</td>
</tr>
<tr>
<td>13</td>
<td>1.09 (0.41, 1.76)</td>
<td>5.19</td>
</tr>
<tr>
<td>16</td>
<td>3.38 (2.39, 4.38)</td>
<td>3.50</td>
</tr>
<tr>
<td>Overall</td>
<td>0.34 (0.10, 0.58)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Variation in Effect Sizes

Source: Hennessy & Tanner-Smith, Prevention Science, 2015

NOTE: Weights are from random effects analysis.
Quantifying heterogeneity

- Three primary statistics:
 - Q – Tells us if the variation is different from chance.
 - τ^2 – Tells us the magnitude of the variation.
 - I^2 – Tells us the proportion of true variation among effects (taking into account the possibility of random variation).

- These allow us to turn visual information into quantitative information.
Explaining heterogeneity

- What to do with sufficient heterogeneity?

- One-way moderator analyses (old approach)

- One-variable meta-regression (old approach)

- Multiple variable meta-regression (best approach)
 - Control for confounding factors
 - Reduce type 1 errors
 - Easier to interpret
Thank you!

Please take a few minutes to respond to the brief Evaluation Survey:

Ryan Williams: rwilliams@air.org
Joshua Polanin: jpolanin@air.org